AI-Powered Code Review Benefits
Traditional code review is time-consuming and inconsistent. AI augments human reviewers by:
Setting Up AI Code Review
GitHub Actions Integration
YAML
name: AI Code Review
on: [pull_request]
jobs:
ai-review:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: AI Code Review
uses: your-org/ai-reviewer@v1
with:
openai-api-key: ${{ secrets.OPENAI_API_KEY }}
review-level: 'comprehensive'
focus-areas: 'security,performance,maintainability'Custom Review Prompt
TypeScript
const reviewPrompt = `Review this code change for:
1. **Security Issues**
- SQL injection, XSS, CSRF vulnerabilities
- Hardcoded secrets or credentials
- Insecure dependencies
2. **Performance**
- N+1 queries
- Memory leaks
- Unnecessary re-renders (React)
3. **Maintainability**
- Code duplication
- Complex conditional logic
- Missing error handling
4. **Best Practices**
- TypeScript strict compliance
- Naming conventions
- Documentation gaps
Output format:
{
"severity": "critical|high|medium|low",
"category": "security|performance|maintainability|style",
"line": number,
"issue": "description",
"suggestion": "how to fix"
}`;Implementing Review Logic
TypeScript
import { Octokit } from '@octokit/rest';
import OpenAI from 'openai';
interface ReviewComment {
path: string;
line: number;
body: string;
severity: 'critical' | 'high' | 'medium' | 'low';
}
async function reviewPullRequest(
prNumber: number,
diff: string
): Promise<ReviewComment[]> {
const openai = new OpenAI();
const response = await openai.chat.completions.create({
model: 'gpt-4-turbo',
messages: [
{ role: 'system', content: reviewPrompt },
{ role: 'user', content: `Review this diff:\n${diff}` }
],
response_format: { type: 'json_object' },
temperature: 0.3
});
const findings = JSON.parse(response.choices[0].message.content);
return findings.issues.map(formatAsComment);
}
async function postReviewComments(
octokit: Octokit,
owner: string,
repo: string,
prNumber: number,
comments: ReviewComment[]
) {
// Filter to only critical and high severity
const significantComments = comments.filter(
c => c.severity === 'critical' || c.severity === 'high'
);
await octokit.pulls.createReview({
owner,
repo,
pull_number: prNumber,
event: significantComments.some(c => c.severity === 'critical')
? 'REQUEST_CHANGES'
: 'COMMENT',
comments: significantComments.map(c => ({
path: c.path,
line: c.line,
body: `**[${c.severity.toUpperCase()}]** ${c.body}`
}))
});
}Security-Focused Scanning
SAST Integration
TypeScript
interface SecurityFinding {
cwe: string;
severity: string;
description: string;
remediation: string;
}
async function securityScan(code: string): Promise<SecurityFinding[]> {
const prompt = `Analyze this code for security vulnerabilities.
Reference OWASP Top 10 and CWE database.
For each finding, provide:
- CWE ID
- Severity (Critical/High/Medium/Low)
- Description
- Remediation steps
Code:
${code}`;
const response = await openai.chat.completions.create({
model: 'gpt-4-turbo',
messages: [{ role: 'user', content: prompt }],
response_format: { type: 'json_object' }
});
return JSON.parse(response.choices[0].message.content).findings;
}Quality Metrics Dashboard
Track AI review effectiveness:
Best Practices
Recommended Reading
š¬Discussion
šØļø
No comments yet
Be the first to share your thoughts!

